Regularization of Inverse Problems with Unknown Operator
نویسنده
چکیده
In this paper, we study statistical inverse problems. We are interested in the case where the operator is not exactly known. Using the penalized blockwise Stein’s rule, we construct an estimator that produces sharp asymptotic oracle inequalities in different settings. In particular, we consider the case, where the set of bases is not associated with the singular value decomposition. The representation matrix of the operator is not diagonal and the regularization problem becomes more difficult.
منابع مشابه
Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملA numerical Algorithm Based on Chebyshev Polynomials for Solving some Inverse Source Problems
In this paper, two inverse problems of determining an unknown source term in a parabolic equation are considered. First, the unknown source term is estimated in the form of a combination of Chebyshev functions. Then, a numerical algorithm based on Chebyshev polynomials is presented for obtaining the solution of the problem. For solving the problem, the operational matrices of int...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملSolving OSCAR regularization problems by proximal splitting algorithms
The OSCAR (octagonal selection and clustering algorithm for regression) regularizer consists of a `1 norm plus a pair-wise `∞ norm (responsible for its grouping behavior) and was proposed to encourage group sparsity in scenarios where the groups are a priori unknown. The OSCAR regularizer has a nontrivial proximity operator, which limits its applicability. We reformulate this regularizer as a w...
متن کامل